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Because olefin-containing molecules are ubiquitous targets,1 the
development of effective methods for incorporating this functional
group is an important goal. If absolute stereochemistry can also be
defined during the bond construction, the utility of a new process is
further enhanced. The reaction of secondary alkyl electrophiles with
alkenylmetal reagents is an attractive approach to the introduction of
olefins, but there are relatively few reports of such cross-couplings.2,3

Furthermore, there has been only one investigation of an enantiose-
lective variant of this type of process (three examples of cross-couplings
of R-haloesters with alkenyltrimethoxysilanes).3b

Alkenylzirconium compounds are appealing alkenylmetals for
cross-couplings,4 in part because they are readily accessible by
reacting commercially available Schwartz’s reagent (Cp2ZrHCl)
with alkynes. Although secondary alkyl electrophiles have now been
coupled with many different families of organometallic partners
(e.g., boron, zinc, magnesium, silicon, tin, and indium compounds),5

to the best of our knowledge, they have not been cross-coupled
with organozirconium reagents.6 In this report, we describe a mild
and versatile method for coupling organozirconium compounds with
secondary alkyl halides, specifically, alkenylzirconium reagents with
racemic R-bromoketones; in addition, we establish that this ste-
reoconvergent carbon-carbon bond-forming process can be ac-
complished with good enantioselectivity to generate potentially
labile �,γ-unsaturated ketones (eq 1).7–9

In initial studies, we attempted to apply previously described
methods for nickel-catalyzed asymmetric cross-couplings8,9 to the
alkenylation of 2-bromo-1-phenylpropan-1-one; unfortunately, we did
not obtain the desired product in satisfactory yield or ee. We therefore
decided to explore the potential utility of a new family of coupling
partners, alkenylzirconium reagents. In addition to their ready avail-
ability, we anticipated that they could provide another crucial attribute:
carbon-carbon bond formation might be achieved under sufficiently
mild, nonbasic conditions that racemization of the R stereocenter and
isomerization to the R,�-unsaturated isomer would be avoided. Such
complications have thus far precluded a Buchwald-Hartwig-type
approach to the catalytic asymmetric alkenylation of carbonyl com-
pounds to generate R tertiary stereocenters.10

We have determined that, under the appropriate conditions, a nickel/
bis(oxazoline) catalyst can achieve the stereoconvergent cross-coupling
of racemic R-bromoketones with alkenylzirconium compounds to
generate �,γ-unsaturated ketones in good yield and ee (Table 1).11

Carbon-carbon bond formation occurs below ambient temperature
(10 °C) and without the need for any additives (e.g., Brønsted bases)
that might erode the enantioselectivity. As illustrated in Table 1, a
broad array of alkenylzirconium reagents are suitable cross-coupling
partners. Thus, the R2 group can range in steric demand from hydrogen
to tert-butyl (entries 1-5). Furthermore, functional groups such as
aromatic rings, oxygen substituents, and alkenes are compatible with
the reaction conditions (entries 3 and 6-9).

We have also examined the scope of this new cross-coupling
process with respect to the R-bromoketone. As illustrated in Table
2, a diverse set of aryl alkyl ketones are suitable electrophiles. A

Table 1. Catalytic Asymmetric Alkenylations with Organozirconium
Reagents: Scope with Respect to the Nucleophilea

a All data are the average of two experiments. b Yield of purified
product. c Catalyst loading: 10% NiCl2 ·glyme/12% (-)-1.

Table 2. Catalytic Asymmetric Alkenylations with Organozirconium
Reagents: Scope with Respect to the Aryl Alkyl Ketone (for the
Reaction Conditions, See Eq 1)a

a All data are the average of two experiments. b Yield of purified
product.
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variety of different types of substituents can be present on the
aromatic ring (electron-donating or electron-withdrawing: entries
4-7; ortho, meta, or para: entries 4-9), and the aromatic group
can be a heterocycle (e.g., a thiophene in entry 10). In addition, an
array of alkyl groups on the ketone and R2 substituents on the
alkenylzirconium reagent are tolerated.

The same method can be applied directly to enantioselective
cross-couplings of dialkyl ketones with alkenylzirconium reagents
(Table 3). This contrasts with our study of asymmetric Kumada
reactions of ketones with aryl Grignard reagents, wherein different
coupling conditions (ligand and temperature) were necessary for
aryl alkyl ketones versus dialkyl ketones.9c

The chiral nickel/bis(oxazoline) catalyst can dictate the stereo-
chemical outcome of a cross-coupling of an R-bromoketone that
bears another stereocenter (i.e., catalyst-controlled stereoselectivity:
eqs 2 and 3). Furthermore, stereoselective functionalizations of the
cross-coupling product can be achieved (eq 4).

In summary, we have demonstrated that a new family of
organometallic compounds, organozirconium reagents, can serve
as suitable partners in cross-coupling reactions of (activated)
secondary alkyl electrophiles. Thus, we have developed the first
catalytic method for coupling secondary R-haloketones with al-
kenylmetal reagents, specifically, a mild, versatile, and stereo-
convergent carbon-carbon bond-forming process that generates
potentially labile �,γ-unsaturated ketones with good enantioselec-
tivity. Additional efforts to expand the scope of cross-couplings of
alkyl electrophiles are underway.
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Table 3. Catalytic Asymmetric Alkenylations with Organozirconium
Reagents: Scope with Respect to the Dialkyl Ketone (for the
Reaction Conditions, See Eq 1)a

a All data are the average of two experiments. b Yield of purified
product. c The reaction was run at 40 °C.
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